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CHAPTER FIVE 

Boolean Algebra 

5.1 Need for Boolean Expressions 
At this point in our study of digital circuits, we have two methods 

for representing combinational logic: schematics and truth tables. 
 
 
 
 
 
 

A B C X 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Figure 5-1   Schematic and Truth Table of Combinational Logic 

These two methods are inadequate for a number of reasons: 
 

• Both schematics and truth tables take too much space to describe 
the operation of complex circuits with numerous inputs. 

• The truth table "hides" circuit information.  
• The schematic diagram is difficult to use when trying to determine 

output values for each input combination. 
 

To overcome these problems, a discipline much like algebra is 
practiced that uses expressions to describe digital circuitry. These 
expressions, which are called boolean expressions, use the input 
variable names, A, B, C, etc., and combine them using symbols 

A 
B 
C 

X 
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representing the AND, OR, and NOT gates. These boolean expressions 
can be used to describe or evaluate the output of a circuit. 

There is an additional benefit. Just like algebra, a set of rules exist 
that when applied to boolean expressions can dramatically simplify 
them. A simpler expression that produces the same output can be 
realized with fewer logic gates. A lower gate count results in cheaper 
circuitry, smaller circuit boards, and lower power consumption. 

If your software uses binary logic, the logic can be represented with 
boolean expressions. Applying the rules of simplification will make the 
software run faster or allow it to use less memory. 

The next section describes the representation of the three primary 
logic functions, NOT, AND, and OR, and how to convert 
combinational logic to a boolean expression. 

5.2 Symbols of Boolean Algebra 
Analogous behavior can be shown between boolean algebra and 

mathematical algebra, and as a result, similar symbols and syntax can 
be used. For example, the following expressions hold true in math. 

 
0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1 

 
This looks like the AND function allowing an analogy to be drawn 
between the mathematical multiply and the boolean AND functions. 
Therefore, in boolean algebra, A AND'ed with B is written A · B. 
 
 

Figure 5-2   Boolean Expression for the AND Function 

Mathematical addition has a similar parallel in boolean algebra, 
although it is not quite as flawless. The following four mathematical 
expressions hold true for addition. 

 
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 2 

 
The first three operations match the OR function, and if the last 
operation is viewed as having a non-zero result instead of the decimal 
result of two, it too can be viewed as operating similar to the OR 

X = A · B 
A
B
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function. Therefore, the boolean OR function is analogous to the 
mathematical function of addition. 
 
 
 

Figure 5-3   Boolean Expression for the OR Function 

An analogy cannot be made between the boolean NOT and any 
mathematical operation. Later in this chapter we will see how the NOT 
function, unlike AND and OR, requires its own special theorems for 
algebraic manipulation. The NOT is represented with a bar across the 
inverted element. 
 
 

Figure 5-4   Boolean Expression for the NOT Function 

The NOT operation may be used to invert the result of a larger 
expression. For example, the NAND function which places an inverter 
at the output of an AND gate is written as: 

 
 

Since the bar goes across A · B, the NOT is performed after the AND. 
Let's begin with some simple examples. Can you determine the 

output of the boolean expression 1 + 0 + 1?  Since the plus-sign 
represents the OR circuit, the expression represents 1 or 0 or 1. 
 
 
 

Figure 5-5   Circuit Representation of the Boolean Expression 1+0+1 

Since an OR-gate outputs a 1 if any of its inputs equal 1, then 
1 + 0 + 1 = 1. 

The two-input XOR operation is represented using the symbol ⊕, 
but it can also be represented using a boolean expression. Basically, the 

X = A + B A
B

X = A A

X = A · B 

1 
1 
0 
1 
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two-input XOR equals one if A = 0 and B = 1 or if A = 1 and B = 0. 
This gives us the following expression. 

 
 
The next section shows how the boolean operators ·, +, ⊕, and the 

NOT bar may be combined to represent complex combinational logic.  

5.3 Boolean Expressions of Combinational Logic  
Just as mathematical algebra combines multiplication and addition 

to create complex expressions, boolean algebra combines AND, OR, 
and NOT functions to represent complex combinational logic. Our 
experience with algebra allows us to understand the expression  
Y = X · (X +5) + 3. The decimal value 5 is added to a copy of X, the 
result of which is then multiplied by a second copy of X. Lastly, a 
decimal 3 is added and the final result is assigned to Y. 

This example shows us two things. First, each mathematical 
operation has a priority, e.g., multiplication is performed before 
addition. This priority is referred to as precedence. Second, variables 
such X can appear multiple times in an expression, each appearance 
representing the current value of X. 

Boolean algebra allows for the same operation. Take for example 
the circuit shown in Figure 5-6. 

 
 
 
 

Figure 5-6   Sample of Multi-Level Combinational Logic 

 In Chapter 4, we determined the truth table for this circuit by taking 
the input signals A, B, and C from left to right through each gate. As 
shown in Figure 5-7, we can do the same thing to determine the 
boolean expression. 

Notice the use of parenthesis in step c. Just as in mathematical 
algebra, parenthesis can be used to force the order in which operations 
are taken. In the absence of parenthesis, however, the AND, OR, and 
NOT functions have an order of precedence.  

A 
B 
C 

X

X = A ⊕ B = A·B + A·B 
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Figure 5-7   Creating Boolean Expression from Combinational Logic 

To begin with, AND takes precedence over OR unless overridden by 
parenthesis. NOT is a special case in that it can act like a set of 
parenthesis. If the bar indicating the NOT function spans a single 
variable, it takes precedence over AND and OR. If, however, the NOT 
bar spans an expression, the expression beneath the bar must be 
evaluated before the NOT is taken. Figure 5-8 presents two examples 
of handling precedence with the NOT function. 

 
 
 
 
 
 
 
 

A 
B 
C 

XB 
a) B goes through the 

first inverter which 
outputs a B 

A 
B 
C 

XB 
b) A and B go through 

the AND gate 
which outputs 
A · B. 

A · B  

A 
B 
C 

XB 
c) A · B and C go 

through the OR 
gate which outputs
(A · B) + C. 

A · B  (A · B) + C 

d) The output of the 
OR gate goes 
through a second 
inverter giving us 
our result. 

A 
B 
C 

XB 
A · B  (A · B) + C 

(A · B) + C 

A 
B 

X = A · B 

A 
B 

X = A · B 

Figure 5-8   Examples of the Precedence of the NOT Function 
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Understanding this is vital because unlike the mathematical inverse, the 
two expressions below are not equivalent. 

 
 
 
Let's do an example addressing precedence with a more complex 

boolean expression. Using parenthesis and the order of precedence, the 
boolean expression below has a single interpretation. 

 
 
 

The following steps show the order to evaluate the above expression. 
 

1. OR B with C because the operation is contained under a single 
NOT bar and is contained within the lowest set of parenthesis 

2. Invert the result of step 1 because NOT takes precedence over OR 
3. OR A with the result of step 2 because of the parenthesis 
4. Invert result of step 3  
5. AND A and D because AND takes precedence over OR 
6. OR the results of steps 4 and 5 

 
We can use this order of operations to convert the expression to its 

schematic representation. By starting with a list of inputs to the circuit, 
then passing each input through the correct gates, we can develop the 
circuit. Figure 5-9 does just this for the previous boolean expression. 
We list the inputs for the expression, A, B, C, and D, on the left side of 
the figure. These inputs are then passed through the gates using the 
same order as the steps shown above. The number inside each gate of 
the figure corresponds to the order of the steps. 

 
 
 
 
 
 

Figure 5-9   Example of a Conversion from a Boolean Expression 

X = A · D + (A + B + C)

A · B ≠ A · B 

A 

B 
C 
D 

X 1 2 
3 4 

5 

6 
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The following sections show how boolean expressions can be used 
to modify combinational logic in order to reduce complexity or 
otherwise modify its structure. 

5.4 Laws of Boolean Algebra 
The manipulation of algebraic expressions is based on fundamental 

laws. Some of these laws extend to the manipulation of boolean 
expressions. For example, the commutative law of algebra which states 
that the result of an operation is the same regardless of the order of 
operands holds true for boolean algebra too. This is shown for the OR 
function applied to two variables in the truth tables of Figure 5-10. 

 
A B A + B  A B B + A 
0 0 0+0 = 0  0 0 0+0 = 0 
0 1 0+1 = 1  0 1 1+0 = 1 
1 0 1+0 = 1  1 0 0+1 = 1 
1 1 1+1 = 1  1 1 1+1 = 1 

Figure 5-10   Commutative Law for Two Variables OR'ed Together 

Not only does Figure 5-10 show how the commutative law applies 
to the OR function, it also shows how truth tables can be used in 
boolean algebra to prove laws and rules. If a rule states that two 
boolean expressions are equal, then by developing the truth table for 
each expression and showing that the output is equal for all 
combinations of ones and zeros at the input, then the rule is proven 
true. 

Below, the three fundamental laws of boolean algebra are given 
along with examples. 

 
Commutative Law:  The results of the boolean operations AND and 
OR are the same regardless of the order of their operands. 

 
A + B = B + A 
A · B = B · A 

 
Associative Law:  The results of the boolean operations AND and OR 
with three or more operands are the same regardless of which pair of 
elements are operated on first. 
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A + (B + C) = (A + B) + C 
A · (B · C) = (A · B) · C 

 
Distributive Law:  The AND'ing of an operand with an OR expression 
is equivalent to OR'ing the results of an AND between the first operand 
and each operand within the OR expression. 

 
A · (B + C) = A · B + A · C 

 
The next section uses truth tables and laws to prove twelve rules of 

boolean algebra. 

5.5 Rules of Boolean Algebra 

5.5.1 NOT Rule 
In algebra, the negative of a negative is a positive and taking the 

inverse of an inverse returns the original value. Although the NOT gate 
does not have an equivalent in mathematical algebra, it operates in a 
similar manner. If the boolean inverse of a boolean inverse is taken, the 
original value results.  

 
 

This is proven with a truth table. 
 
 
 
 
Since the first column and the third column have the same pattern of 

ones and zeros, they must be equivalent. Figure 5-11 shows this rule in 
schematic form. 

 
 

Figure 5-11   Schematic Form of NOT Rule 

5.5.2 OR Rules 
If an input to a logic gate is a constant 0 or 1 or if the same signal is 

connected to more than one input of a gate, a simplification of the 

A = A

 A A A 
 0 1 0 
 1 0 1 

A A = A 
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expression is almost always possible. This is true for the OR gate as is 
shown with the following four rules for simplifying the OR function. 

First, what happens when one of the inputs to an OR gate is a 
constant logic 0?  It turns out that the logic 0 input drops out leaving 
the remaining inputs to stand on their own. Notice that the two columns 
in the truth table below are equivalent thus proving this rule. 

 
 
 
 
 
What about inputting a logic 1 to an OR gate? In this case, a logic 1 

forces the other operands into the OR gate to drop out. Notice that the 
output column (A + 1) is always equal to 1 regardless of what A equals. 
Therefore, the output of this gate will always be 1. 

 
 
 
 
 
If the same operand is connected to all of the inputs of an OR gate, 

we find that the OR gate has no effect. Notice that the two columns in 
the truth table below are equivalent thus proving this rule. 

 
 
 
 
Another case of simplification occurs when an operand is connected 

to one input of a two-input OR gate and its inverse is connected to the 
other. In this case, either the operand is equal to a one or its inverse is. 
There is no other possibility. Therefore, at least one logic 1 is 
connected to the inputs of the OR gate. This gives us an output of logic 
1 regardless of the inputs. 

 
 
 

5.5.3 AND Rules 
Just as with the OR gate, if either of the inputs to an AND gate is a 

constant (logic 0 or logic 1) or if the two inputs are the same or inverses 

Rule: A + 0 = A
A A + 0 
0 0+0 = 0 
1 1+0 = 1 

Rule: A + 1 = 1
A A + 1 
0 0+1 = 1 
1 1+1 = 1 

Rule: A + A = A
A A + A 
0 0+0 = 0 
1 1+1 = 1 

Rule: A + A = 1
A A + A 
0 0+1 = 1 
1 1+0 = 1 
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of each other, a simplification can be performed. Let's begin with the 
case where one of the inputs to the AND gate is a logic 0. Remember 
that an AND gate must have all ones at its inputs to output a one. In 
this case, one of the inputs will always be zero forcing this AND to 
always output zero. The truth table below shows this. 

 
 
 
 
 
If one input of a two-input AND gate is connected to a logic 1, then 

it only takes the other input going to a one to get all ones on the inputs. 
If the other input goes to zero, the output becomes zero. This means 
that the output follows the input that is not connected to the logic 1. 

 
 
 
 
 
If the same operand is connected to all of the inputs of an AND gate, 

we get a simplification similar to that of the OR gate. Notice that the 
two columns in the truth table below are equivalent proving this rule. 

 
 
 
 
 
Last of all, when an operand is connected to one input of a two-input 

AND gate and its inverse is connected to the other, either the operand is 
equal to a zero or its inverse is equal to zero. There is no other 
possibility. Therefore, at least one logic 0 is connected to the inputs of 
the AND gate giving us an output of logic 0 regardless of the inputs. 

 
 
 
 

5.5.4 XOR Rules 
Now let's see what happens when we apply these same input 

conditions to a two-input XOR gate. Remember that a two-input XOR 

Rule: A · 0 = 0
A A · 0 
0 0 · 0 = 0 
1 1 · 0 = 0 

Rule: A · 1 = A
A A · 1 
0 0 · 1 = 0 
1 1 · 1 = 1 

Rule: A · A = 0
A A · A 
0 0 · 1 = 0 
1 1 · 0 = 0 

Rule: A · A = A
A A · A 
0 0 · 0 = 0 
1 1 · 1 = 1 
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gate outputs a 1 if its inputs are different and a zero if its inputs are the 
same. 

If one of the inputs to a two-input XOR gate is connected to a logic 
0, then the gate's output follows the value at the second input. In other 
words, if the second input is a zero, the inputs are the same forcing the 
output to be zero and if the second input is a one, the inputs are 
different and the output equals one. 

 
 
 
 
 
If one input of a two-input XOR gate is connected to a logic 1, then 

the XOR gate acts as an inverter as shown in the table below. 
 
 
 
 
 
If the same operand is connected to both inputs of a two-input XOR 

gate, then the inputs are always the same and the gate outputs a 0. 
 
 
 
 
 
Lastly, if the inputs of a two-input XOR gate are inverses of each 

other, then the inputs are always different and the output is 1. 
 
 
 
 

5.5.5 Derivation of Other Rules 
If we combine the NOT, OR, and AND rules with the commutative, 

associative, and distributive laws, we can derive other rules for boolean 
algebra. This can be shown with the following example. 

Example 
Prove that A + A·B = A 

Rule: A ⊕ 0 = A
A A ⊕ 0 
0 0 ⊕ 0 = 0 
1 1 ⊕ 0 = 1 

Rule: A ⊕ A = 1
A A ⊕ A 
0 0 ⊕ 1 = 1 
1 1 ⊕ 0 = 1 

Rule: A ⊕ A = 0
A A ⊕ A 
0 0 ⊕ 0 = 0 
1 1 ⊕ 1 = 0 

Rule: A ⊕ 1 = A
A A ⊕ 1 
0 0 ⊕ 1 = 1 
1 1 ⊕ 1 = 0 
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Solution 
 A + A·B  = A·1 + A·B Rule:  A · 1 = A 

  = A·(1 + B) Distributive Law 

  = A·(B + 1) Commutative Law 

  = A·1 Rule:  A + 1 = 1 

  = A Rule:  A · 1 = A 

Remember also that rules of boolean algebra can be proven using a 
truth table. The example below uses a truth table to derive another rule. 

Example 
Prove BABAA +=⋅+  

Solution 
The truth table below goes step-by-step through both sides of the 

expression to prove that BABAA +=⋅+ . 
 
 
 
 
 
 
 
The mathematical "F-O-I-L" principle, based on the distributive law, 

works in boolean algebra too. FOIL is a memory aid referring to the 
multiplication pattern for multiplying quadratic equations. It stands for: 

 
F – AND the first terms from each OR expression 
O – AND the outside terms (the first term from the first OR 

expression and the last term from the last OR expression) 
I – AND the inside terms (the last term from the first OR 

expression and the first term from the last OR expression) 
L – AND the last terms from each OR expression 

Example 
Prove (A + B)·(A + C) = A + B·C 

A B A A·B A + A·B A + B 
0 0 1 0 0 0 
0 1 1 1 1 1 
1 0 0 0 1 1 
1 1 0 0 1 1 
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Solution 
(A + B)·(A + C) = (A + B)·A + (A + B)·C Distributive Law 

  = A·A + B·A + A·C + B·C Distributive Law 

  = A + B·A + A·C + B·C Rule: A·A  = A 

  = A + A·B + A·C + B·C Commutative Law 

  = A + A·C + B·C Rule: A + A·B = A 

  = A + B·C Rule: A + A·B = A 

Now that you have a taste for the manipulation of boolean 
expressions, the next section will show examples of how complex 
expressions can be simplified. 

5.6 Simplification 
Many students of algebra are frustrated by problems requiring 

simplification. Sometimes it feels as if extrasensory perception is 
required to see where the best path to simplification lies. Unfortunately, 
boolean algebra is no exception. There is no substitute for practice. 
Therefore, this section provides a number of examples of simplification 
in the hope that seeing them presented in detail will give you the tools 
you need to simplify the problems on your own. 

The rules of the previous section are summarized in Figure 5-12. 
 
1. AA =  9. 0=⋅ AA   
2. AA =+ 0  10. AA =⊕ 0  
3.  11 =+A  11. AA =⊕1  
4.  AAA =+  12. 0=⊕ AA  
5.  1=+ AA  13. 1=⊕ AA  
6.  00 =⋅A  14. ABAA =⋅+  
7. AA =⋅1  15. BABAA +=⋅+  
8. AAA =⋅  16. CBACABA ⋅+=+⋅+ )()(  

Figure 5-12   Rules of Boolean Algebra 
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Example 
Simplify (A·B + C)(A·B + D) 

Solution 
From the rules of boolean algebra, we know that (A + B)(A + C) = 

A + BC. Substitute A·B for A, C for B, and D for C and we get: 
 

(A·B + C)(A·B + D) = A·B + C·D 

Example 
Simplify )()( BBBA +⋅+  

Solution 
 
(A + B)·1 

 
Anything OR'ed with its inverse is 1 

 
(A + B) 

 
Anything AND'ed with 1 is itself 

Example 
Simplify )( BAAB ⋅+⋅  

Solution 
_     _ _ 
B·A + B·A·B 

 
Distributive Law 

_     _ _ 
B·A + A·B·B 

 
Associative Law 

_     _ 
B·A + A·0 

 
Anything AND'ed with its inverse is 0 

_ 
B·A + 0 

 
Anything AND'ed with 0 is 0 

_ 
B·A 

 
Anything OR'ed with 0 is itself 

  _ 
A·B 

 
Associative Law 

Example 
Simplify )()( BABA +⋅+  
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Solution 
_     _ _           _ 
A·A + A·B + B·A + B·B Use FOIL to distribute terms 
    _ _           
0 + A·B + B·A + 0 Anything AND'ed with its inverse is 0 
_ _           
A·B + B·A Anything OR'ed with 0 is itself 

Example 
Simplify CBACBACBACBA ⋅⋅+⋅⋅+⋅⋅+⋅⋅  

Solution 
_  _ _   _       _ 
A·(B·C + B·C + B·C + B·C) Distributive Law 
_  _  _           _ 
A·(B·(C + C) + B·(C + C)) Distributive Law 
_  _ 
A·(B·1 + B·1) Anything OR'ed with its inverse is 1 
_  _ 
A·(B + B) Anything AND'ed with 1 is itself 
_ 
A·1 Anything OR'ed with its inverse is 1 
_ 
A  Anything AND'ed with 1 is itself 

5.7 DeMorgan's Theorem 
Some of you may have noticed that the truth tables for the AND and 

OR gates are similar. Below is a comparison of the two operations. 
 

AND  OR 

A B X = A·B  A B X = A+B 
0 0 0  0 0 0 
0 1 0  0 1 1 
1 0 0  1 0 1 
1 1 1  1 1 1 

 
Okay, so maybe they're not exactly the same, but notice that the 

output for each gate is the same for three rows and different for the 
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fourth. For the AND gate, the row that is different occurs when all of 
the inputs are ones, and for the OR gate, the different row occurs when 
all of the inputs are zeros. What would happen if we inverted the inputs 
of the AND truth table? 

 
AND of inverted inputs  OR 
 
A 

 
B 

    _ _ 
X = A·B 

  
A 

 
B

 
X = A+B 

0 0 1  0 0 0 
0 1 0  0 1 1 
1 0 0  1 0 1 
1 1 0  1 1 1 

 
The two truth tables are still not quite the same, but they are quite 

close. The two truth tables are now inverses of one another. Let's take 
the inverse of the output of the OR gate and see what happens. 

 
AND of inverted inputs  OR with inverted output 
 
A 

 
B 

    _ _ 
X = A·B 

  
A

 
B

    ____ 
X = (A+B) 

0 0 1  0 0 1 
0 1 0  0 1 0 
1 0 0  1 0 0 
1 1 0  1 1 0 

 
So the output of an AND gate with inverted inputs is equal to the 

inverted output of an OR gate with non-inverted inputs. A similar proof 
can be used to show that the output of an OR gate with inverted inputs 
is equal to the inverted output of an AND gate with non-inverted 
inputs. This resolves our earlier discussion where we showed that the 
NOT gate cannot be distributed to the inputs of an AND or an OR gate.  

This brings us to DeMorgan's Theorem, the last Boolean law 
presented in this chapter.  

 
 
 
The purpose of DeMorgan's Theorem is to allow us to distribute an 

inverter from the output of an AND or OR gate to the gate's inputs. In 
doing so, an AND gate is switched to an OR gate and an OR gate is 

A + B = A · B A + B = A · B 
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switched to an AND gate. Figure 5-13 shows how pushing the inverter 
from the output of a gate to its inputs. 

 
 
 
 
a.) Pushing an inverter through an AND gate flips it to an OR gate 
 
 
 
 
 
b.) Pushing an inverter through an OR gate flips it to an AND gate 

Figure 5-13   Application of DeMorgan's Theorem 

DeMorgan's Theorem applies to gates with three or more inputs too. 
 
 
 
 
 
 
 
One of the main purposes of DeMorgan's Theorem is to distribute 

any inverters in a digital circuit back to the inputs. This typically 
improves the circuit's performance by removing layers of logic and can 
be done either with the boolean expression or the schematic. Either 
way, the inverters are pushed from the output side to the input side one 
gate at a time. The sequence of steps in Figure 5-14 shows this process 
using a schematic. 

It is a little more difficult to apply DeMorgan's Theorem to a 
boolean expression. To guarantee that the inverters are being 
distributed properly, it is a good idea to apply DeMorgan's Theorem in 
the reverse order of precedence for the expression.  

 
 
 
 

     
A + B + C + D = (A + B)·(C + D) 
                 _ _   _ _ 
              = (A·B)·(C·D) 
                _ _ _ _ 
              = A·B·C·D 

A · B + C Step 1:  The AND takes precedence over the OR, so 
distribute inverter across the OR gate first. 
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a.) Push inverter through the OR gate distributing it to the inputs 
 
 
 
 
 

b.) Push inverter through the AND gate distributing it to the inputs 
 
 
 
 
 

c.) Two inverters at B input cancel each other 
 
 
 
 

Figure 5-14   Schematic Application of DeMorgan's Theorem 

5.8 What's Next? 
Using the methods presented in this chapter, a boolean expression 

can be manipulated into whatever form best suits the needs of the 
computer system. As far as the binary operation is concerned, two 
circuits are the same if their truth tables are equivalent. The circuits, 
however, may not be the same when measuring performance or when 
counting the number of gates it took to implement the circuit. The 

A 
B 
C 

X

A 
B 
C 

X

A 
B 
C 

X

A 
B 
C 

X

A · B · C Step 2:  Now distribute the inverter across the A·B 
term. 

(A + B) · C Step 3:  In this final case, the use of parenthesis is 
vital. 
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optimum circuit for a specific application can be designed using the 
tools presented in this chapter. 

In Chapter 6, we will show how the rules presented in this chapter 
are used to take any boolean expression and put it into one of two 
standard formats. The standard formats allow for quicker operation and 
support the use of programmable hardware components. Chapter 6 also 
presents some methods to convert truth tables into circuitry. It will be 
our first foray into designing circuitry based on a system specification. 

Problems 
1. List three drawbacks of using truth tables or schematics for 

describing a digital circuit. 

2. List three benefits of a digital circuit that uses fewer gates. 

3. True or False:  Boolean expressions can be used to optimize the 
logic functions in software. 

4. Convert the following boolean expressions to their schematic 
equivalents. Do not modify the original expression 

  ___                                         
 a.) A·B + C 
    _     _     ___ 
 b.) A·B·C + A·B + A·C 
  _________     _ 
 c.) (A + B·C) + A·D 
    _   _ 
 d.) A·B + A·B 

   
5. Convert each of the digital circuits shown below to their 

corresponding boolean expressions without simplification. 

 

 
A

B
X

a.)
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6. Apply DeMorgan's Theorem to each of the following expressions 
so that the NOT bars do not span more than a single variable. 

  _______                                        
 a.) A·C + B 
      _______________                              
 b.) D(C + B)(A + B) 
      _       ____                       
 c.) A + B + C + (AB) 
 

7. Simplify each of the following expressions. 
          _                                      
 a.) B·A + B·A 
              _                                  
 b.) (A + B)(B + A) 
      _       ____                       
 c.) A + B + C + (AB) 
  _                            
 d.) B(A + A·B) 
   _          _ 
 e.) (A + B)(A + B) 
  _   ____   _ 
 f.) B + (AB) + C 

A

B

C

X

A

B
X 

b.)

c.)


